

SQL

The Simplified Beginner’s Guide
to SQL

Contents

ACCESS YOUR FREE DIGITAL ASSETS
OVERVIEW

Sample Database

INTRODUCTION
What is SQL?

Syntax & Structure

| 1 | RETRIEVING DATA WITH SQL
The SELECT Statement

The FROM Clause

Limiting Data by Specifying Columns

SQL Predicates

Returning DISTINCT Rows

TOP

The WHERE Clause

Comparison Operators

Logical Operators

Dealing with Ranges & Wildcards

Operator Precedence

The ORDER BY Clause

Using Aliases with the AS Clause

Selecting Records from Multiple Tables

Including Excluded Data with OUTER JOIN

NULL Values

COUNT

| 2 | BUILT-IN FUNCTIONS & CALCULATIONS
SUM

Other Functions

Grouping Data with the GROUP BY Clause

Limiting Group Results with HAVING

| 3 | ENTERING & MODIFYING DATA
INSERT Information INTO the Database

Updating Data

Deleting Data from Tables

| 4 | DEFINING DATABASES
Creating/Deleting a Database

Data Types

Characters

Numerical Data

Date & Time

Defining Tables

CONCLUSION
GLOSSARY
ABOUT CLYDEBANK TECHNOLOGY

Terms displayed in bold italic can be found defined in the glossary,

BEFORE YOU START READING,

DOWNLOAD YOUR FREE DIGITAL ASSETS!

Visit the URL below to access your free Digital Asset files that are included with

the purchase of this book.

DOWNLOAD YOURS HERE:

www.clydebankmedia.com/sql-assets

https://www.clydebankmedia.com/sql-assets

Overview

A database is a collection of data consisting of a physical file residing on
a computer. The collection of data in that file is stored in different tables
where each row in the table is considered as a record. Every record is
broken down into fields that represent single items of data describing a
specific thing. For example, you can store information about a collection
of book data inside a database. Information pertaining to the books
themselves can be stored in a table called Books. Each book record can be
stored in one table row with each specific piece of data such as book title,
author, or price, stored into a separate field.

More technically, a database can also be defined as an organized
structured object stored on a computer consisting of data and metadata.
Data, as previously explained, is the actual information stored in the
database, while metadata is data about the data. Metadata describes the
structure of the data itself, such as field length or datatype. For example,
in a company database the value 6.95 stored in a field is data about the
price of a specific product. The information that this is a number data
stored to two decimal places and valued in dollars is metadata.

Databases are usually associated with software that allows for the data
to be updated and queried. The software that manages the database is

called a Relational Database Management System (RDBMS). These
systems make storing data and returning results easier and more efficient
by allowing different questions and commands to be posed to the database.
Popular RDBMS software includes Oracle Database, Microsoft SQL
Server, MySQL, and IBM DB2. Commonly, the RDBMS software itself is
referred to as a database, although theoretically this would be a slight
misnomer. When working with databases we will participate in the design,
maintenance and administration of the database that supplies data to our
website or application. In order to do this, however,we will need to access
that data and also automate the process to allow other users to retrieve and
perhaps even modify data without technical knowledge. To achieve this we
will need to communicate with the database in a language it can interpret.
Structured Query Language (SQL) will allow us to directly communicate
with databases and is thus the subject of this book. In this book we will
learn the basics of SQL. SQL is composed of commands that enable users
to create database and table structures, perform various types of data
manipulation and data administration and query the database in order to
extract useful information.

Sample Database
The examples in this book use the Northwind Traders Access database,

which is a sample database that comes with the Microsoft Office suite.
The Northwind database contains sales data for a fictitious company called
Northwind Traders, which imports and exports specialty foods from
around the world. Depending on your Office version, the Northwind
database might look slightly different, as it has evolved over time.
Nevertheless, the examples use only those tables that have remained
unchanged in each iteration.

fg. 1 : Database schema of the Northwind Traders database

You can download the Northwind database from the following link:
www.bit.ly/northwind-db-sql

http://www.bit.ly/northwind-db-sql

Introduction

What Is SQL?
Ideally, a database language must enable us to create structures, to

perform data management chores (add, delete, modify) and to perform
complex operations that transform the raw data into information. SQL,
sometimes pronounced “sequel”, is a support language for communicating
with relational databases. SQL is also the language of choice for almost
every RDBMS in use today because it provides a standardized method for
storing and retrieving data. The SQL standard is maintained by both the
American National Standards Institute (ANSI) and the International
Standards Organization (ISO). The latest released version of the standard
is SQL:2008 under ISO/IEC 9075. However, even with a standard in place
there are numerous SQL dialects (PL/SQL, T-SQL, SQL-PL, MySQL)
among the various vendors, evolving from requirements of the specific
user community. This means that different RDBMS products implement
SQL in slightly different ways.

The SQL statements in this book run on Microsoft SQL Server and Microsoft Access.
Running the SQL statements in a different RDBMS might require slight adjustments in some
specific cases. Please refer to the documentation of the RDBMS of your personal choice.

SQL is a text-oriented language requiring only a text processor as it
was developed long before graphical user interfaces. While todays’
RDBMS products provide graphic tools for performing many SQL tasks,
not everything can be done without delving into code. Additionally, SQL is
quite different from procedural languages such as C++, Visual Basic and
other languages where the programmer has to write step-by-step
instructions to the computer in order to exactly define how to achieve a

specified goal. SQL is a declarative language, which means that instead of
using the language to tell the database what to do; you use it to tell the
database what you want. With SQL you specify the results you want and
the language itself determines the rest.

As discussed previously, a relational database is composed of tables
that store data in a column/row format. At first glance, a database table
resembles a spreadsheet with rows being your records and columns
containing the fields for the records.

Each database management system tracks these tables by indexing
them in a sort of data dictionary or catalog that contains a list of all the
tables in the database. The list also stores pointers to each table’s location.
The dictionary can store additional metadata information as well, such as
table definitions and even data specific to the database itself. When we
send a request to the database using SQL, the database locates the
requested table in the dictionary-without any additional instructions from
our side. All we need to do is specify the name of the table, and the
database will do the rest as SQL works independently of the internal

structure of the database. The database then processes the request, called a
query. For us a query is simply a question posed to the database. For the
RDBMS a query is a SQL statement that must be executed.

SQL queries are the most common use of SQL. A query is a question
we pose to the database, and the database then provides the data that
answers our query. As databases store only raw data, just the facts without
intelligence, we query the database with the purpose of processing the
returned data and obtaining meaningful information. The broader
definition of a query within the relational database environment is :

Que.ry (n) : A query is a statement written in SQL, which may include
commands and actions, written to solicit an answer to a question or to
perform an action.

SQL Server is the name of a relational database management system that Microsoft
distributes. SQL is a language. Therefore, SQL Server is not SQL. If you’re unfamiliar with
database systems and languages, it can be easy to confuse the two because the names are
similar.

Most SQL queries are used to answer questions such as “What products
currently held in inventory are priced over $100 and what is the quantity
on hand for each of those products?” or “How many employees have been
hired by each of the company’s departments since November 1, 2004?” We
can think of a query as a type of sentence, with nouns, verbs, clauses, and
predicates. For example, let’s turn the following sentence into a query:

“Show me all the employees that live in the southwest region.”

The subject in this case is the database, the verb is, “show me,” the
phrase “all the employees” is a clause, and “that live in the southwest
region” is a predicate. The resulting SQL statement resembles the
following:

SELECT *

FROM Employees

WHERE Region = “Southwest”

Processing the request returns a table of data, which in SQL terms is
called a view. A view can best be defined as a virtual table based on the
parameters you passed to the database via your SQL statement.

In summary, a relational database model contains tables, each of which
consists of a set of data. The data is structured into rows and columns,
each row being a distinct record. To access the records in these tables you
send requests to the database in the form of “queries” that are written in
Structured Query Language (SQL). For the rest of this book you’ll learn
the basic SQL statements and syntax that you’ll need to communicate with
almost any relational database.

Syntax & Structure
In spoken languages, syntax dictates grammar and sentence structure.

Similarly, in programming languages syntax dictates the structure and
terminology to be used when writing code. In SQL, syntax is used to create
statements as self-contained actions. Standard SQL is simple and
straightforward as the bulk of the language is composed of commands, and
learning how to arrange those commands in the proper order is all you
really have to master. Because SQL’s vocabulary is simple, SQL is
relatively easy to learn with a basic command set vocabulary of less than
100 words. Also, as SQL is a nonprocedural language, we only have to
command what is to be done and not worry about how it is going to be
done.

There are three categories of SQL syntax term: identifiers, literals, and
keywords. An identifier is a unique identifier for some element in a
database system, such as a table, or a field name. If you create a database
table called Customers, then ‘Customers’ is the identifier. A literal would
be an actual data value like ‘Edgar’, ‘32’, ‘September 17, 2014’. A
keyword is something that has meaning to the database system itself. It is

a call to action with each keyword following its own rules on how to
perform the action.

A SQL statement can be as simple as:
SELECT DateofBirth

FROM Customers

The previous statement uses the keyword SELECT to select data from
the field identified by the ‘DateofBirth’ name. The data is retrieved FROM
the table identified by the ‘Customers’ name.

As we learn new keywords we will also learn what the database expects
as a minimum and what options can be added to form a more prolific
statement.

Generally, SQL statements may be divided into the following
categories:

Data Query Language (DQL) : Statements that query the database but
do not alter any data or database objects. This category contains the
SELECT statement.

Data Manipulation Language (DML) : Statements that modify data
stored in database objects, such as tables. This category contains the
INSERT, UPDATE, and DELETE statements.

Data Definition Language (DDL) : Statements that create and modify
database objects. Whereas DML and DQL work with the data in the
database objects, DDL works with the database objects themselves. This
category includes the CREATE, ALTER and DROP statements.

Data Control Language (DCL) : Statements that manage privileges that
database users have regarding the database objects. This category
includes the GRANT and REVOKE statements.

The next chapter will present in detail how to use SQL as a data query

language where we will learn the fundamentals of extracting information
from the database. Afterwards, we will focus on SQL as a data
manipulation language and learn how to insert, modify and delete. Finally,
we will emphasize SQL as a data definition language as we delve into the
core of databases and manipulate the database structure itself by defining
and managing database objects.

| 1 | Retrieving Data with SQL

SQL’s most powerful feature is its ability to extract data. At a basic level,
you can extract data in the same form in which it was originally entered
into the database tables. Alternatively, you can query the database to
obtain answers to questions that are not explicitly stated in the raw data.
The key to retrieving data from a database is the SELECT statement. In its
basic form the SELECT statement is very simple and easy to use. There
are, however, many additional options that can make return more
customized results.

The SELECT Statement
The most frequently used SQL statement is the SELECT statement. It is

the workforce of the entire language. The SELECT statement retrieves
data from the database for viewing in such a way so that it makes it easy to
browse and analyze the data. Essentially, the SELECT statement is used to
retrieve specific column(s) from a database table(s).

The SELECT statement can combine with five keyword clauses to
specify and limit how the data from the table(s) is retrieved. The syntax
looks something like this:

SELECT ColumnNames

FROM TableNames

[WHERE Condition]

[GROUP BY Column]

[HAVING Condition]

[ORDER BY Column][ASC | DESC]]

In this predefined syntax the FROM clause is the only keyword that is

mandatory to combine with SELECT in order to retrieve data. The FROM
statement is needed in order to specify to the database what tables in the
database to retrieve the data from.

In the following examples we will start with the simplest form of the
SELECT statement and add keyword clauses and literals to restrict the
retrieval and/or presentation of the data. However, before we continue we
must be aware of the general format conventions for SQL statements:

Use uppercase for all keywords
Most clauses appear on individual lines

In its simplest form, the SELECT statement retrieves all the columns
from all the records in a table using just the mandatory FROM clause.

SELECT *

FROM Customers

The example above retrieves all the columns and records from the
Customers table in the sample database. The resulting table might look
something like Figure 2 :

fg. 2 : Result from a SELECT * statement

The asterisk character (*) is used as an argument in the SELECT clause
to signify that all the columns from the underlying table must be retrieved.

We should avoid using this shorthand unless we truly need all the
columns; otherwise we are asking the database system to provide
information we don’t need, wasting processor power and memory. This
might be insignificant when working with a small database but it makes a
huge difference when many people are simultaneously accessing a large
database.

The FROM Clause
The FROM clause specifies the tables from which the SELECT

statement will retrieve data. This clause usually refers to one or more
tables, but it can also include other queries. The following example for the
FROM clause retrieves information from the Products table:

FROM Products

If you need to include information from more than one table, you
separate the table names with commas:

FROM Products, Categories

If the table name consists of more than one word, then it has to be
included in brackets ([]):

FROM Orders, [Order Details]

Limiting Data by Specifying Columns
The initial SELECT statement presented in this section used the

asterisk (*) to retrieve all the data from the Customers table. However, we
will seldom want to work with all the table data at one time. The first step
to limiting data is to limit the retrieved columns by identifying only the

columns you need. The syntax follows:

SELECT Column1, Column2...

FROM TableNames

When using this syntax, we must specify at least one column. If we
include a list of columns, they have to be separated with a comma
character just like the table names in the FROM clause. The following
statement retrieves only three columns: CustomerID, ContactName and
ContactTitle, from the Customers table (Figure 3):

SELECT CustomerID, ContactName, ContactTitle

FROM Customers

The order in which the columns are listed in the SELECT statement
determines the order in which the columns will be returned as results. The
order of the results themselves usually reflects the order in which the
records were entered into the database.

fg. 3 : SELECT results from the Customers table

SQL Predicates
You can use predicates in combination with the SELECT statement to

impose some limitations on the number of retrieved records. By default,
the SELECT statement returns all records because SQL assumes that the
ALL predicate is active. Therefore, using the statement:

SELECT ALL ContactName

FROM Customers

Is the same as using the following statement:

SELECT ContactName

FROM Customers

Returning DISTINCT rows
If you want to know all the unique values in a record and eliminate

duplicate rows, you must use the DISTINCT predicate keyword. The
DISTINCT keyword is added directly after the SELECT keyword to return
a list of only unique data entries. For example:

SELECT DISTINCT City

FROM Customers

Will return a unique list of cities from the Customers table, omitting
the duplicates. This is essentially an answer to the question: “How many
different cities do Customers come from?”

fg. 4 : DISTINCT cities and countries for customers

We are allowed to include additional columns in SELECT DISTINCT
statements. While the additional columns will be considered, the
elimination of duplicate values takes precedence from left to right.
Therefore, additional columns will rarely have an effect on the values
returned from the first column and should be used only if additional data
is required, for example, if we needed to know the countries along with the
cities (Figure 4).

SELECT DISTINCT City, Country

FROM Customers

In this case, the DISTINCT predicate discards records only if the
combined values create a duplicate record. Only if a City with the same
name exists in two countries will you get a duplicate value in the City
field. Consequently, no duplicate results will be displayed if the City and
the Country fields are both identical.

TOP
Another optional predicate keyword in the SELECT statement is the

TOP keyword. TOP returns the top ‘n’ rows
or top ‘n’ percent of records, based on the SELECT clause. This predicate
is useful when you want to return a subset of records that meet all the
other criteria. SQL processes the TOP predicate only after it completes all
other criteria, such as joins, predicates, grouping, and sorts.

The TOP predicate uses the form:

TOP n [PERCENT] column1 [,column2...]

And can be combined with other predicates in the form:

SELECT [ALL | DISTINCT][TOP n

[PERCENT]column1[,column2...]]

Use TOP predicate to return the first 5 items from the Products table
(Figure 5):

SELECT TOP 5 ProductID, ProductName, UnitPrice

FROM Products

fg. 5 : TOP 5 products as entered in the Products table

The query will return only five records. If instead you wanted to return
five percent of the most expensive items, as opposed to just five records,
you could use the following statement (Figure 6):

SELECT TOP 5 PERCENT ProductID, ProductName,

UnitPrice FROM Products

ORDER BY UnitPrice DESC

The WHERE Clause
We will seldom have to select all of the records in a table. More often

we will need to filter the results in order to obtain only the information we
want. To accomplish this we can use the WHERE clause keyword in
combination with the SELECT statement. Doing this, will set one or more
conditions that must be fulfilled by a record before SQL includes that
record in its results. The clause is used in the following syntax form:

SELECT data

FROM datasource

WHERE condition

The following statement returns only products with a selling price of
over $10. (Figure 7).

SELECT ProductName, UnitPrice

FROM Products

WHERE UnitPrice > 10

fg. 7 : List of products costing more than $10

fg. 6 : TOP 5 most expensive products as entered in the Products table

When working with percentages, the TOP predicate always rounds up
to the next highest integer. Also, if the TOP predicate finds duplicate
records that meet the SELECT statements criteria, it returns both records
and includes them both in the count.

Most TOP queries simply don’t make sense without the ORDER BY
clause, since SQL returns what may seem like a meaningless set of records

sorted by entry order. This clause will be reviewed later on.

Table. 1 : List of conditional operators

Comparison Operators
The conditions we use to filter records from a table usually involve

comparing the values of an attribute to some constant value. We can ask
whether the value of an attribute is the same, different, less than, or
greater than some value. The response to the condition (ex. UnitPrice=10)
is a statement or expression that is either true or false. As such,
comparisons are also called Boolean expressions. The common
comparison operators are presented in Table 1.

The syntax for the TOP predicate varies significantly across RDBMS. The examples above
are valid only for Microsoft SQL Server and Microsoft Access.

The condition argument is stated as a conditional expression and can be
as simple as a comparison to a given value or a complex expression. Let’s
start with a simple example that compares the data to a given value. The
following statement returns only products that belong to the category with
1 as the ID value, the Beverage category.

Comparisons can be done between numbers (numerical), text
(alphabetical) and dates (chronological). Comparing numbers is
straightforward, but when comparing text attributes, the values have to be

put in a character field within quotation marks (“”). For example, the
following query will return all companies that are not from Berlin (Figure
8).

SELECT CompanyName

FROM Customers

WHERE City <> “Berlin”

Text comparison is alphabetical, meaning that “A” comes before “Z”,
so “A” < “Z”. Putting numbers in a character field will filter the results
alphabetically “40” < “5” and vice versa, putting text in number fields will
filter the results numerically. We have to make sure we are using the
correct type, or we might end up with some surprising query results.

Comparison operators can also be used with date/time values. Instead
of using quotation marks, we enclose the date/time values in pound signs
(##). Table 2 gives a list of possible date conditions that can appear in a
WHERE clause. Comparison operators allow for many different queries
with which we can compare a value of an identifier with a literal (ex.
Country = “Germany”).

fg. 8 : List of companies not situated in Berlin

Table. 2 : Using conditional operators with dates

The NOT operator is used to negate the result of a conditional
expression. In SQL, all expressions evaluate to true and false. If the
expression is true, the row is selected; if it is false, it is discarded.
Therefore, the NOT operator is used to find the rows that do not match a
certain condition. In essence, including the NOT operator will cause the
query to return the opposite results of a standard query (Figure 10). In the
following example, the query selects all suppliers that come neither from
France nor the USA:

SELECT CompanyName, Country

FROM Suppliers

WHERE NOT Country = “France”

AND NOT Country = “USA”

fg. 9 : List of products costing between $10 and $100

fg. 10 : List of suppliers that exclude France and USA

Logical Operators
When more than one condition needs to be tested in a WHERE

statement, we can use the NOT, AND, and OR logical operators to link the
conditions. The meaning of these operators is synonymous with their

meaning in the English language; the NOT operator means that the
condition(s) must be false, the AND operator means that all listed
conditions need to be true, and the OR operator indicates that only one of
the conditions needs to be true. Adding criteria complicates the WHERE
clause but gives us more control over the results.

When comparing text, some implementations of SQL are case-sensitive while others are
not. For situations in which the SQL implementation is case-sensitive and you need to
retrieve data by disregarding the case of the letters, use the function UPPER to turn the
value of each text attribute into uppercase before the comparison takes place (ex. WHERE
UPPER (Country) = “GERMANY”).

As an example, the following query will return all products that cost
more than $10 but less than $100.(Figure 9).

SELECT ProductName, UnitPrice

FROM Products

WHERE UnitPrice >=10

AND UnitPrice <=100

The WHERE clause is flexible. We can refer to columns that aren’t in
the SELECT clause-as long, as those columns are present in the referenced
tables. For example, let’s suppose that we want to see a list of suppliers
that are either from Brazil or are situated in Tokyo (Figure 11). The
following statement uses an OR operator to include both conditions in one
WHERE clause without including the condition columns in the results.

SELECT CompanyName

FROM Suppliers

WHERE Country = “Brazil” OR City = “Tokyo”

fg. 11 : List of suppliers coming from the country of Brazil or the city of Tokyo

The case-sensitivity of some SQL implementations are also present when using the LIKE
operator (ex. LIKE M% would be different from LIKE m%).

Dealing With Ranges & Wildcards
The BETWEEN operator allows us to specify a range between one

value and another. In a previous example, to check for a value within a
certain range we used the “greater than or equal to” (>=) and the “less than
or equal to” (<=) operators. The BETWEEN operator functions in exactly
the same way with the end points of the range included in the condition.
So instead of writing:

WHERE UnitPrice >=5

AND <=100

You can write:

WHERE UnitPrice

BETWEEN 5 AND 100

Microsoft Access uses the asterisk (*) instead of percentage (%) and the question mark (?)
instead of the underscore (_).

The BETWEEN operator can be used in conjunction with other data
types, such as text and dates.

When searching for partial values, SQL provides the LIKE operator,
which compares field values to a specified pattern. While creating the
pattern you can use wildcard characters to replace unknown characters. A

wildcard character doesn’t match a specific character, but instead matches
any one or any of more characters. The underscore (_) replaces one
unknown value, while the percentage symbol (%) replaces any number of
unknown values.

The following example lists all products for which the price has 1 as
the first digit and any other number as a second digit (Figure 12).

SELECT ProductName, UnitPrice

FROM Products

WHERE UnitPrice LIKE “1?”

fg. 12 : List of products costing 10 and something dollars

The following example (Figure. 13) displays all companies that come
from a country beginning with the letter F.

SELECT CompanyName

FROM Customers

fg. 13 : List of companies in countries beginning with the letter F

WHERE Country LIKE “F*”

Operator Precedence
When there is more than one operator in a condition, there are certain

rules that determine the order in which operators are evaluated. A
hierarchy of operators will determine which operator is evaluated first
when the condition contains multiple operators. The highest precedence is
given to brackets ([]), followed by the NOT operator, the AND operator
and all of the following operators with the same precedence: ALL, ANY,
BETWEEN, IN, LIKE, OR, and SOME.

Additionally:
If the operators have different precedence, then the highest ones are

evaluated first, then the next highest, and so on.
If all the operators have equal precedence, then the conditions are

interpreted from left to right.
Technically, the best way to ensure operator precedence is to use

brackets. They can make the SQL easier to read because by making it clear
which conditions are evaluated first, which is quite helpful when the
conditions are complex.

The ORDER BY Clause
Up to this point query results have come in the order the database

decides, usually based on the order in which the data was entered (except
for the example used in the TOP keyword description.) Listing query
results in a specific order is a frequent requirement, which in SQL is
specified with the ORDER BY clause keyword. The ORDER BY clause
goes at the very end of the SELECT statement, after the WHERE clause,
and defines the column(s) that will determine either the ascending or the
descending order of the results.

The following example (Figure 14) sorts customers by the name of the
company. SQL will perform an alphabetic sort, since CompanyName is a
text column.

SELECT CompanyName, ContactName, ContactTitle,

City

FROM Customers

fg. 14 : Alphabetical list of companies

ORDER BY CompanyName

ORDER BY will sort the records into ascending order by default, which
is evident from the results of the preceding SQL sort from A to Z. If you
require descending order, you must add DESC after the list of columns in
the ORDER BY clause. For example, the following statement sorts the
results of the query in a descending order by CompanyName.

SELECT CompanyName, ContactName, ContactTitle,

City

FROM Customers

ORDER BY CompanyName DESC

fg. 15 : Alphabetical list of companies presented in a descending order

Because ascending order is the default for ORDER BY, specifying
ascending order is not necessary in the SQL query. Additionally, the
column used to order the results doesn’t have to form part of the results.
Furthermore, we can use more than one column to sort results by simply
listing each column by which to sort the results and separating each
column with a comma. The order in which the columns are defined in the
SELECT statement will determine the order of priority in sorting. For
example, the following statement sorts the results of the query in a
descending order by ContactTitle and then each group of records
containing the same ContactTitle is further sorted by city in an ascending
order. (Figure 16).

SELECT CompanyName, ContactName, ContactTitle,

City

FROM Customers

ORDER BY ContactTitle DESC, City

fg. 16 : List of companies ordered by multiple columns

Using Aliases with the AS Clause
When retrieving columns from the database tables, you are not limited

to just using column names. If necessary you can give column names
aliases in the results where the aliases would simply be secondary names

for collections of data. For example, if you want your results to display an
alias called Surname instead of the predefined field name LastName, you
can write the following query.

SELECT LastName AS Surname

FROM Employees

Using an alias doesn’t change the results returned in any way, nor does
it rename the LastName column from the Customers table. By combining
the SELECT statement with an AS clause, you essentially create a
temporary name for a column or a group of columns. This clause is
optional, and when it is omitted, SQL uses the default column’s name.

With aliases you can also combine the data from two or more columns
into one column, with the resulting column bearing the alias name. The
joining of columns is also known as concatenation, which as an approach
varies depending on the RDBMS. In Microsoft SQL Server and MS Access
you use the concatenation operator, which is the plus (+) sign.

The following query (Figure 17) will join the FirstName and LastName
columns into a new alias column called FullName.

SELECT FirstName + LastName AS FullName

FROM Employees

fg. 17 : Example of concatenating columns in a single alias column

fg. 18 : Example of concatenating columns in a single alias column with space.

Obviously, the results are slightly lacking as our intent was not to glue
the two columns together, but to have them as two separate words placed
into one column. (Figure 18) Hence, we need to include the empty space
between the concatenated columns in the SQL query itself. Hence, our
statement should be structured as follows:

SELECT FirstName + " " + LastName AS FullName

FROM Employees

Selecting Records from Multiple Tables
Until this point the SQL queries we used were extracting data from

only one database table. This is quite limiting, as answers usually require
the joining of data from more than one table. To understand why joins are
useful, let’s suppose that we want a list of products from the “Beverages”
category (Figure 19). If we just use the following statement:

SELECT Products.ProductName,

Categories.CategoryName

FROM Categories, Products

fg. 19 : Retrieving products results from 2 tables

The SQL query will return all the possible combinations of records
from the Categories and Products tables, which is obviously not the
required result. If we take a closer look at the Products table we will see
that there is only a numerical value for CategoryID, while the name
corresponding to that numerical value has to be looked up in the
Categories table. However, in SQL the tables are combined using the join
operation. If SQL didn’t support joins, we would have to first determine
that the CategoryID value for “Beverages” is 1 and then use this
information in the WHERE clause.

Since the query retrieves data from multiple tables, the field name in the SELECT statement
must be preceded with the table name. Otherwise, there would be no way of distinguishing
between two fields from different tables if those filed share the same name.

In the example above, since it was not explicitly stated, the join
operation was performed on all fields, because there were no guidelines as
to how to combine the two tables. As the link has been identified, we will
use what is known as an inner join to combine the two tables. The inner
join will allow us to specify the columns and the originating tables that

form the join and under what conditions. For example, we can specify a
condition that says the CategoryID field from the Categories table is
equivalent to the CategoryID field from the Products table. Only records
with a matching CategoryID in both tables will be included in the final
results.

The syntax for inner join follows the following structure:

Table1 INNER JOIN table2 ON column_from_table1 =

column_from_table2

Only Microsoft Access requires the INNER keyword when performing a join. For other
RDBM’s the INNER keyword is omitted and only the JOIN… ON syntax is used.

The SELECT statement expectantly begins with a list of the columns
required to form the results. The FROM line doesn’t just list the tables
used in the query, but this time the INNER JOIN keyword is used to
specify that the two tables should be joined. The ON keyword that follows
specifies what joins the tables, which in this case is the CategoryID field
from both tables (Figure 20). Applying the syntax to our situation yields
the following code:

SELECT Products.ProductName, Categories.

CategoryName

FROM Categories INNER JOIN Products ON

Categories.

CategoryID=Products.CategoryID

WHERE Categories.CategoryName = “Beverages”

fg. 20 : Retrieving products results from inner joined tables

Using INNER JOIN or JOIN to create an inner join between tables is
not the only way to join tables. An alternative way to define a relationship
between the tables by connecting the contents of two fields is simply to
specify the link in the WHERE clause. This would restructure the previous
SQL statement as follows:

SELECT Products.ProductName, Categories.

CategoryName

FROM Categories, Products

WHERE Categories.CategoryID=Products.CategoryID

AND Categories.CategoryName = “Beverages”

In this case the WHERE clause specifies that Categories. CategoryID
should equal Products. CategoryID, which creates the join. Technically,
this yields the same results as INNER JOIN. However, it is considered that
INNER JOIN makes an explicit statement as to which tables are joined
making the SQL easier to read and understand. When using joins we are
not limited to joining two tables. It is possible to join as many tables as
the desired information requires. For example, let’s suppose we want a list

of suppliers of beverage products with each product listed along with the
product price. When we want to design more complex queries, we first
have to work out what information is required and how it is connected
across tables. If we look at the database tables it is easy to identify that we
will need four data items: CompanyName, ProductName, UnitPrice,
CategoryName from three different tables: Products, Categories and
Suppliers. We can also identify that the Categories and Products tables are
connected by the CategoryID field while the Suppliers and Products tables
are connected by the SupplierID field (Figure 21). With this we have
enough information to construct the SQL statement as follows.

SELECT Products.ProductName, Categories.

CategoryName, Products.UnitPrice, Suppliers.

CompanyName

FROM Categories INNER JOIN Products ON

Categories.

CategoryID=Products.CategoryID INNER JOIN

Suppliers ON Products.SupplierID=Suppliers.

SupplierID

WHERE Categories.CategoryName = “Beverages”

fg. 21 : Retrieving products results from multiple inner joined tables

Including Excluded Data with OUTER

JOIN
In some occasions, situations arise in which the INNER JOIN examples

from the previous section would discard potentially useful data. For
instance, if a product has no category assigned to it, then it would never be
returned as a valid result since the condition
Category.CategoryID=Products.CategoryID is not fulfilled. This kind of
loss is not always desirable, so there is a special type of join called an
outer join to deal with these situations. Before we explain outer joins, let’s
give them a different perspective in order to understand joins better.

With trickier queries, especially those involving more than one table,
thinking in terms of sets of records can be helpful. Let’s view each table in
the database as a set of records. When we run a SQL query, the results can
also be viewed as a set of records. Hence, the following two queries will
result into two different sets of records that contain all records from their
respective tables. (Figure 22 & 23).

SELECT Products.ProductName, UnitPrice

FROM Products

SELECT Categories.CategoryName

FROM Categories

fg. 22 : Presenting table data as sets

When we join these sets of records with an INNER JOIN (Figure 23),
we essentially include only those records in which there is an overlap as
defined by the ON clause.

fg. 23 : Overlapping sets with INNER JOIN

An inner join requires that both sets of records involved in the join
include matching records. If we want to include records from either side of
the sets that are not overlapping, we need to use an outer join. An outer
join doesn’t require a match on both sides, as we can specify which table
will always return results regardless of the conditions in the ON clause.
There are three types of outer joins: left outer join, right outer join, and
full outer join. The syntax is identical to that for inner joins; the only
change is the OUTER JOIN keyword.

In a left outer join, all the records from the table named on the left of
the OUTER JOIN statement are returned, regardless of whether there is a
matching record in the table on the right of the OUTER JOIN statement.
For example (Figure 24), the following query:

SELECT Products.ProductName, Categories.

CategoryName

FROM Categories LEFT OUTER JOIN Products

ON Categories.CategoryID=Products.CategoryID

fg. 24 : Product results from a LEFT OUTER JOIN example

Will also return categories for which no products are defined.
Conversely, in a right outer join, all the records from the table named on
the right of the OUTER JOIN statement are returned, regardless of
whether there is a matching record in the table on the left of the OUTER
JOIN statement (Figure 25). For example, the following query:

SELECT Products.ProductName, Categories.

CategoryName

FROM Categories RIGHT OUTER JOIN Products

ON Categories.CategoryID=Products.CategoryID

Will also return products that don’t have a category assigned to them.
The full outer join is essentially a combination of left and right outer
joins. Records from both the table on the left and right are included even if
there are no matching records. Many database systems don’t support this
join, and neither MS Access nor MySQL offer any alternatives.

fg. 25 : Products results from a RIGHT OUTER JOIN example

NULL Values
What values are contained in fields in which no value is specified?

Logically, database fields with no values are empty fields, but SQL doesn’t
allow for data to hold no value. As a matter of fact, fields with no
specified value are considered NULL. NULL is not the same as nothing; it
represents the unknown. When we don’t enter data into a database cell,
SQL considers that there is a value that one day might be known and
stored in this field, but at this moment that value is unknown. That is
where NULL comes into the picture.

Why should we care about all this? Well, unknown values, or NULLs,
can lead to unexpected and overlooked results. For example, you might
consider that the following SQL would return all the records from the
Employees table:

SELECT FirstName, LastName, BirthDate

FROM Employees

WHERE BirthDate >= #1800-01-01#

However, if there is an employee for whom the BirthDate field was
omitted during data entry, the name of that employee will not appear in the
results. In order to check for NULL values, we must use the IS NULL
operator (Figure 26).

SELECT FirstName, LastName, BirthDate

FROM Employees

WHERE BirthDate >= #1800-01-01# OR BirthDate

IS NULL

fg. 26 : Querying null data

Generally, it is better to avoid the NULL value whenever possible and,
if possible, assign a default value to the field during data entry.

Table 3 : SQL built-in functions

COUNT
The COUNT function is used to count the number of records that are

returned as a result of a query. It is used in the SELECT statement along
with the column name for which the counting is to take place. The value
returned in the results set is the number of non-empty values in that
column. Alternatively, instead of a column name you can insert an asterisk

(*), in which case all columns for all records in the results will be counted.
For example, (Figure 27), if we want to count the number of Products

in our database, we use the following query:

SELECT COUNT(*)

FROM Products

Or

SELECT COUNT(ProductID)

FROM Products

| 2 | Built-In Functions &
Calculations

The SQL queries we have used so far return results as a set of individual
records. If instead we want to summarize the records’ data (ex. find the
average price), we need to provide an aggregation of results. SQL has
many aggregate functions for manipulating numbers and text, both basic
and advanced, and it allows for calculations of values based on table data
(Table 3). SQL includes five built-in functions:

fg. 27 : Counting products

fg. 28 : Counting more than one column

In the COUNT function the actual column name is not as important as
long as it is a field that can be counted towards the requested result.
Usually, the smartest approach is to count the ID fields in a table, as these
fields are least likely to be empty.

It is possible to include more than one function in the SELECT
statement (Figure 28). For example, the following statement returns the
number of non-empty CompanyName fields and non-empty Fax fields.

SELECT COUNT (CompanyName), COUNT (Fax)

FROM Customers

However, combining a function with a regular column will result in an
error (ex. SELECT Phone, COUNT(CompanyName). In these cases the
identifier will return more than one row of results, whereas COUNT
always returns only one row.

In the above COUNT example, (Figure 28), it is noticeable that the
retrieved result is placed inside a column with a system-generated name.
To define a column name we can use alias names with the AS clause
(Figure 29).

SELECT COUNT(ProductID)AS NumberOfProducts

FROM Products

fg. 29 : Counting with alias column names

SUM
The SUM function adds up all the values for the expression passed to it

as an argument. The expression itself can be a column name or a
calculation and can only be performed with numerical fields. As an
example let’s use a numerical column to calculate the total items we have
in stock.

SELECT SUM(UnitsInStock)

FROM Products

Another more logical example would be to calculate the total income
from all items sold (Figure 30). For this query we need to use the Order
Details table from which we will calculate the sum of
UnitPrice*Quantity*Discount.

SELECT SUM(UnitPrice * Quantity * Discount)

FROM [Order Details]

fg. 30 : Summing data from multiple column expressions

Just like with the COUNT example, the retrieved result is placed inside
a system-generated column. To define a column name we can define an
alias with the AS keyword.

SELECT SUM(UnitPrice * Quantity * Discount)

AS TotalIncome

FROM [Order Details]

Other Functions
The AVG function takes the total sum of values in the expression and

divides that value by the number of rows. The expression, whether it is a
specific column or a calculation, must have a numeric value in order to
return a valid result. For example, let’s say that we want to check the
average product price in our store database:

SELECT AVG (UnitPrice)

FROM Products

Of course, as with other functions and queries, we can use alias
columns and aggregate data from multiple tables (Figure 31). The
following query calculates the average price of beverage products.

SELECT AVG (UnitPrice) AS AverageBeveragePrice

FROM Products INNER JOIN Categories

ON Products.CategoryID=Categories.CategoryID

WHERE CategoryName = “Beverages”

fg. 31 : Average price for beverages

The MAX and MIN functions return the highest and the lowest values
that can be found in the resulting record set. These functions can be used
with non-numeric data types, unlike the SUM and AVG functions. For
example, we can use MAX and MIN to find the youngest and oldest
employees by determining the earliest and latest dates of birth. (Figure
32).

SELECT MAX(BirthDate), MIN(BirthDate)

FROM Employees

fg. 32 : Oldest and youngest employees

Additionally, we can also calculate the largest and smallest value in a
character field. This means that MAX will return the alphabetically largest
value, as close to the letter Z as possible, while MIN will return the
alphabetically lowest value closest to the letter A.

SELECT MAX(LastName), MIN(LastName)

FROM Employees

Grouping Data with the GROUP BY
Clause

Now that we have started summarizing the data, we can start using
groups in order to provide more detailed and refined data aggregation.
With grouping we can find out more information about a particular record
in accordance with specific parameters.

The GROUP BY clause defines groups that you might want to evaluate
in some calculation as a whole. Used in conjunction with the SELECT
statement, the GROUP BY clause allows us to group identical data into
one subset instead of listing each individual record. From a syntax
perspective, the GROUP BY clause always goes after any FROM or
WHERE clauses in the SELECT statement, with all the columns we want
to be grouped included in the column list.

Let’s say that we want to find out the countries from which our
customers come. Using the GROUP BY clause, we would write the
following query:

SELECT Country

FROM Customers

GROUP BY Country

As the answer doesn’t require a list of every member and the state in
which each member lives, with the GROUP BY clause we simply ask SQL
to treat the customers who come from the same state as one data instance.

If we want to include more than one column in the GROUP BY clause,
then we separate the columns with commas, the same way we separate
columns in other clauses. Following on the previous example, if we also
want to know the cities in which our customers live, we will use the
following query:

SELECT City, Country

FROM Customers

GROUP BY City, Country

fg. 33 : Results for cities from the GROUP BY example query

fg. 34 : Counting customers per country with a GROUP BY clause

Notice that Figure 33 & Figure 34 include the same columns both in
the SELECT statement and the GROUP BY clause. Most RDBMSs will
not allow the columns to be different, because if we don’t specify a group
for a column in the SELECT statement, then there is no way of deciding
which value to include for a particular group. The results can include only
one identical record per group, and each row represents the results from a
group of records, not the individual records themselves. Including an
ungrouped column will create more than one row for each group, which
isn’t allowed. The GROUP BY clause is at its most powerful when
combined with SQL’s summarizing and aggregating functions. As the
GROUP BY clause doesn’t actually summarize data, any calculations for
summarizing that data must be provided in the form of built-in functions.

If we build on the previous example, and instead of a list of countries
we want to know how many customers come from each country based on
the information from the Customers table, we can use the following query:

SELECT Country,

COUNT(CustomerID)

FROM Customers

GROUP BY Country

Going back to our first COUNT example, we counted the total number
of items in the Products table. With the GROUP BY clause we can now
identify the number of products per category. As we will be retrieving data
from more than one table, we will also use a join as well as an alias for the
results of the COUNT function.

SELECT Categories.

CategoryName,

COUNT (Products.ProductID)

AS NumberOfProducts

FROM Categories

INNER JOIN Products

ON Categories.CategoryID=

Products.CategoryID

GROUP BY Categories.

CategoryName

In this example (Figure 35) the GROUP BY clause actually gives
instructions as to how to group the COUNT function, which in a previous
example returned a single value. We can use the GROUP BY clause with
any other built-in function.

fg. 35 : Counting products by categories with alias columns

For example, the following query will retrieve the average product
price for each category of products:

SELECT Categories.CategoryName,

AVG (Products.UnitPrice) AS AveragePrice

FROM Categories INNER JOIN Products

ON Categories.CategoryID=Products.ProductID

GROUP BY Categories.CategoryName

Limiting Group Results with HAVING
It is possible to further limit the results of a grouped query. The

HAVING clause enables us to specify conditions that will filter the group
results that appear in the final record set. By essentially eliminating
records from the group, the HAVING clause resembles the behavior of the
WHERE clause, which in turn limits the results of the SELECT statement.
The HAVING clause is applied immediately after the GROUP BY
statement and usually includes an aggregate function. This is especially
useful when we filter data based on a summarized evaluation for each
group. For example (Figure 36), the following query creates a list of

countries from which we have more than 5 customers:

SELECT Country

FROM Customers

GROUP BY Country

HAVING COUNT(CustomerID) >= 5

fg. 36 : Limiting group results with the HAVING clause

The HAVING clause applies on a per-group basis, filtering out those
groups that don’t match the condition. In comparison, the WHERE clause
applies on a per-record basis, filtering out records. Therefore, while the
WHERE clause restricts the record set with which the GROUP BY clause
works, the HAVING clause affects only the display of the final results. The
HAVING condition can have more than one expression combined with any
logical operators.

| 3 | Entering & Modifying Data

Now that we have examined how to extract information from the database,
the next step is to learn how to enter new data as well as modify existing
information via SQL. Most RDBMSs provide tools that allow us to view
database tables as well as add, modify and delete the data within those
tables. While these tools are convenient when we work with small
amounts of data, entering large amounts of data requires a different
approach. Therefore, SQL offers three statements, INSERT INTO,
UPDATE and DELETE, which will be the focus of this final section. As
each statement name suggests, they are used for inserting, updating and
deleting database data.

INSERT Information INTO the Database
The INSERT INTO statement provides us with an easy way to insert

new data into an existing database. In the statement we first need to
specify the table into which we want to insert data, followed by the
columns into which data is to be inserted, and finally the actual data that
needs to be inserted. The basic syntax for this statement is as follows:

INSERT INTO tableName (columnName1,

columnName2...)

VALUES (dataValue1, dataValue2,...)

The column names are separated by commas and placed in brackets
after the table name. After this expression comes the VALUES statement
and a comma-separated list of each data item that will be placed into the
respective column. Character and date data must be placed in single
quotes, while delimiters are not necessary for numerical values.

For example, the following statement adds an additional record to the
Categories table, specifically the category “Vegetables.”

INSERT INTO Categories (CategoryID,

CategoryName, Description)

VALUES (9, ‘Vegetables’, ‘Seasoned vegetables’)

We can specify the column names in any order we prefer. Regardless of
column order, SQL will perform in the same way as long as the order of
the column names set matches the data set. Conversely, the following SQL
will also be valid:

INSERT INTO Categories (CategoryName,

CategoryID, Description)

VALUES (‘Vegetables’, 9, ‘Seasoned vegetables’)

If we insert the data in the same order as column names, it is also
possible to completely leave out column names. The RDBMS will
interpret the query just like its extended version.

INSERT INTO Categories

VALUES (9, ‘Vegetables’, ‘Seasoned vegetables’)

The advantage of not naming columns in the INSERT statement is that
it saves typing and makes shorter SQL statements. The obvious
disadvantage is the difficulty in seeing which data goes into which
columns. After any of these statements, checking the Categories table with
a properly structured SELECT statement will provide the following results
(Figure 37):

Updating Data
Besides adding new records, we will eventually need to change the data

in existing records. For this purpose we will use the UPDATE statement.
Although similar, the main difference between inserting new data and
updating existing data is the specification of the records that need to be
changed. The records to be changed are defined with the WHERE clause,
which will allow us to specify only those records that satisfy a certain
condition. The SET clause will specify the exact columns in which data
will be changed, separating multiple columns/value pairs with a comma.
The generic syntax of the statement is as follows:

UPDATE tableName

SET columnName = value

WHERE condition

For example, let us say that one of our suppliers has changed the
contact person responsible and has provided us with new data about the
replacement. First, we need to identify the SupplierID, as this is the unique
value that can be used in the WHERE clause to tell the database which
specific records to update. However, it is not necessary to update every
field in the record; it is sufficient to provide data only for the fields that
are actually changing. The UPDATE statement allows us to define both the
fields and the data that needs to be updated.

UPDATE Suppliers

SET

ContactName=’Selene Pereira’,

ContactTitle=’Marketing Manager’,

Phone=’(172) 555 5345’

WHERE SupplierID=10

We need to consider that for situations in which the condition from the
WHERE clause matches more than one record, all of the matching records
will be changed in accordance with the instructions in the UPDATE
statement.

Deleting Data from Tables
Deleting database data is easy. It is sufficient to first specify the table

from which you will delete records, and then, if necessary, to add a
WHERE clause to define the actual records to delete. Conversely, if we
want to completely delete all records from a table, we can simply write the
following SQL statement:

DELETE FROM Products;

If we execute the above statement, we will delete all the data from your
Products table. To limit the deletion to only specific records, we can write
the following query:

DELETE FROM Products

WHERE ProductID = 10

This SQL will delete all records from the Products table in which the
ProductID has a value of 10. As this is a unique value, only one record will
be deleted since there is only one product whose ProductID is ten. If we
want to delete a range of records, we just need to modify the WHERE
clause.

DELETE FROM Products

WHERE ProductID > =10 AND ProductID < 20

Nevertheless, deleting a record doesn’t delete the references to that
record in other tables. For example, although the Order Details table refers
to products in the Products table, deleting a product from the Products
table doesn’t delete its respective reference in the Order Details table. This
has to be executed with an additional SQL statement:

DELETE FROM [Order Details]

WHERE ProductID=10

If we are using ranges, then we modify the statement as follows:

DELETE FROM [Order Details]

WHERE ProductID > =10 AND ProductID < 20

| 4 | Defining Databases

The SQL language is not just limited to query and manipulation. It can
also manipulate database objects starting from database creation. Many
RDBMSs come with an easy-to-use interface that makes the task of
creating new and manipulating existing database objects very simple and
intuitive. With a few mouse clicks, and by entering a name, systems such
as Access, SQL Server, Oracle, etc., allow us to create database objects
without bothering with SQL syntax.

Creating/Deleting a Database
Before we can start working with a database, we need to actually create

the database. There are plenty of options to achieve this goal, but we will
focus only on the default, which in SQL is as easy as running the following
statement:

CREATE DATABASE NorthWind

We use the CREATE DATABASE command followed by a database
name, and we are all set. We have to mind how we name database objects,
as different RDBMSs have different rules. The general guidelines for all
systems are to use letters, numbers and the underscore character avoiding
all other special characters, punctuation or spaces. Although they accept
numbers, some systems don’t allow the number to be the first character in
the name, so we need to be mindful never to use names such as
1Customers. Finally, the names of all database objects have to be unique,
as we cannot have two databases or two tables from the same database
share a common name.

Deleting the database is as easy as creating the database. Nevertheless,

we have to be mindful of the data that already exists in the database, as
deleting the database will also delete all data it contains. Like the
CREATE command, most RDBMSs have an easy-to-use user interface that
allows us to drop a database using SQL.

We use the DROP DATABASE command followed by the database
name:

DROP DATABASE NorthWind

After creating a database the next step is adding tables. However,
before we add any tables, we will look at the concept of data types.

Data Types
In the outside world we naturally categorize information into different

types. When thinking of a price or the distance between two points, we
think in terms of numbers. When looking up directions to a specific
location, we expect textual information. The data type is determined based
on its intended use. In databases, this classification helps the system to
make more sense of its values. It is similar to what we naturally do in the
real world, but in databases we categorize the data more formally.

Defining data types across RDBMSs has slight variations. The approach presented in this
book is in accordance with the SQL:2008 standard; for individual implementation please
check the product documentation accordingly.

Although we could treat all data as text and develop the database and
future applications accordingly, the main reason for storing data with
different data types is efficiency. Speed of access improves and storage
space decreases when the database knows the type of data it has to process.
For example, a large number such as 48903928 can be stored in 4 bytes of
computer memory if it is treated as a numerical value, while storing the
same number as character data will occupy twice as much space.
Furthermore, the data type also tells the RDBMS what the user is expected

to do with the data itself
Table 4 contains a small subset of the more commonly-used data types,

which is more than enough to get us started. It briefly describes each data
type followed by an example of how it is used in syntax form. The data
categories themselves are explained in more detail in the following
section.

Table. 4 : Fundamental data types

Characters
When we want to store text in a database field, we use one of the

character data types. There are four possible variations, albeit we will only
focus our explanation on two: fixed length and variable length. For
example, if we use the code char(220), the RDBMS allocates enough
memory to store 220 characters. If we store only 20 characters, the other

200 allocated places will be filled with empty spaces, which is rather
wasteful. We might consider storing only 20 characters with char(20), but
what happens when we need to store more, or maybe fewer? The
alternative is the code varchar(220), as it will only use the actual amount
of memory without pre-allocation.

The char and varchar data types are limited to a maximum character storage of 255. For
larger text we will need to use the memo (or text for MySQL) data type, which can store up
to 65535 characters. We don’t need to specify the actual number of characters this data
type can hold. It is preset by the database system itself.

Generally speaking, if the text data is expected to be of an approximate
fixed length, then we will use the char data type as it allows for quick
entry and manipulation. When the text data is of a variable length with a
great scope, then we will use varchar.

Numerical Data
Integers, also known as whole numbers, are the easiest numbers to

understand. In databases, the two most common integer data types are int
and smallint. The difference between the two types is the size of the
number they can store and the memory allocation needed to store the
number. The smallint data type deals with a range between –32,768 and
32,767, whereas the int data type can handle a range between –
2,147,483,648 and 2,147,483,647.

Floating numbers, also known as decimal numbers, can store the
fractional parts of numbers. The two most common floating data types are
real and decimal, for which, as with integers, the difference is number size
and memory allocation. The real data type can store a range of numbers
between –3.40E+38 and 3.40E+38 with a limit of 8 decimal places. This
data type is very useful when we have huge numbers, but we are not too
concerned about precision. When the number is too large to store precisely
as a real data type, the database system converts it to the scientific

notation with some loss of accuracy because of the dropped decimals. The
decimal data type is similar to real, but it stores all the digits it can hold.
Unlike with the real data type, storing a number that exceeds the capacity
of the decimal data type will round of the number off instead of just
dropping the digits. Due to this accuracy, knowing the flexibility of the
decimal data type is important when we need to specify how many digits
we want to store.

Date & Time
Time is a fairly easy data value to store. We need the hours, minutes

and seconds, and we can store the time in the several formats such as
HH:MM:SS, AM/PM, 24-hour, etc. On the other hand, dates have many
possible variations, all of which depend on several inconsistent factors.
For example, all of the following dates are valid: 8 Jun 2012, Jun 8, 2012,
12 June 2012, 12/06/2012, 06/12/2012, and 12-6-2012. In these examples
the biggest problem arises when we specify the month by number instead
of name. In America this data value would read as month/day, while in the
EU this data value would be red as day/month. Therefore, it is advisable to
avoid the date number format, and instead use the month’s name or at least
the abbreviation of its name.

In some cases RDBMSs don’t keep date and time as separate values,
but store them in one field. The date usually goes first, followed by the
time in one of the aforementioned formats.

Defining Tables
Now that we have learned about creating databases and defining data

types, we will finish this book by discussing how to create a new table,
alter existing tables and delete tables that are no longer necessary.

There are additional table options that can be managed in this statement, such as
constraints, which are outside of the scope of this book.

To create a table we use the CREATE TABLE statement. In this
statement we have to give the table a name and define each table column
with a name and a data type. The basic syntax is as follows:

CREATE TABLE tableName

(

columnName1 datatype

columnName2 datatype

columnName3 datatype

...

)

First we write the CREATE TABLE statement, then the unique name of
the table. In the next line we create a list defining each column in brackets.
Each column definition is placed on its own line separated by a comma. If
we were to create the Categories table, this would be the actual code:

CREATE TABLE Categories

(

CategoryID int,

CategoryName varchar (40),

Description varchar (255)

)

To change the properties of an existing table, we need the ALTER
TABLE statement. With this statement we can modify table columns and,
in some RDBMSs, even change the data type of an existing column. The
basic syntax is shown below:

ALTER TABLE tableName

ADD columnName datatype

DROP COLUMN columnName

MS SQL Server uses datetime as data type, while Oracle stores both date and time into the

date data type.

After the ALTER TABLE keyword, which essentially notifies the
database system what is to happen, we provide the name of the table to be
altered. Afterwards, when we want to add a new column, we continue the
syntax with the ADD command and provide a column name with a data
type, just like when we create a table. Deleting a column has a similar
syntax, except we now tell the database which column to delete. The
following example will add an ExpiryDate column to the Categories table:

ALTER TABLE Categories

ADD ExpiryDate date

As this column is unnecessary in the Categories table, we will delete it
with the following statement:

ALTER TABLE Categories

DROP COLUMN ExpiryDate

We need to remember that dropping a column will permanently erase
all data previously entered in that column.

We follow this pattern when we use the DROP TABLE statement for
deleting tables. The basic syntax is as follows

DROP TABLE tableName

To delete the Categories table we would simply write:

DROP TABLE Categories

However, dropping a table is not a light task to perform. Obviously, the
data in the table will be deleted along with the table itself. What is not so
obvious is that potential complications arise with related data in other
tables.

Conclusion

This book covered a wide array of topics, but they all dealt with how to get
information from a database. Initially, we were introduced to SQL, the
language for communicating with a database. The focus was on using SQL
as a query language, while the other aspects of the language were omitted.

We learned that the key to extracting data with SQL is the SELECT
statement, which allows us to select the columns and tables from which to
extract data. We now know how to filter with the WHERE clause by
specifying any number of conditions in order to obtain the results that suit
our particular needs. We were introduced to logical and comparison
operators in order to better manage situational data conditions. We also
learned how to manage the order of results in ascending or descending
order, based on one or more columns with the ORDER BY clause.

By using the JOIN statements we tackled the slightly tricky topic of
selecting data from more than one table. We managed to link two or more
tables to form a new results set, and we learned the importance of the
unknown (NULL) value.

We then summarized and aggregated data rather than getting results
based on individual records. Central to this concept was the GROUP BY
statement, which enables results to be based on groups of common data. In
conjunction with SQL’s aggregate functions such as COUNT, SUM, AVG,
MAX, and MIN we learned how to manipulate data and calculate specific
values. We also explored the HAVING clause, which filters out the result
of groups using various conditions, much like a WHERE clause does for a
SELECT statement. Conversely, we learned how to add new records to a
database using the INSERT INTO statement, updated already existing data

with the UPDATE statement, and learned about the DELETE statement,
which allows us to delete all or specific records from a table.

Finally, we learned how to use SQL to define the structure of the
database itself. We used the CREATE DATABASE statement to create a
new database from scratch. We also learned about CREATE/ALTER/DROP
TABLE commands to successfully manipulate the structures of tables.

ank you for choosing ClydeBank Media as your source for information.

We hope you enjoyed the book and that you have found it a valuable aid in

your education.

Our company survives based on feedback from customers like you. Your

feedback helps inform the purchasing decision of customers who come after

you and most importantly, allows us to constantly improve our products.

If you have any questions or need support for your order, please contact

us at support@clydebankmedia.com

https://tinyurl.com/y9by7w29
mailto:support%40clydebankmedia.com?subject=

Glossary

Aggregate Function - A function that produces a single result based on the contents of an entire
set of
table rows.

Alias -A short substitute or nickname for a table/column name.Column -
A table component that holds a single attribute of the table.

Comparison Operators -Used to compare between values

Data Type -A set of representable values.

Database -A self-describing collection of records.

RDBMS -A relational database management system.

Index -A table of pointers used to locate rows rapidly in a data table.

Join - A relational operator that combines data from multiple tables into a single result table.

Logical Operators - Used to connect or change the truth-value of predicates to produce more
complex predicates.

Metadata - Data about the structure of the data in a database.

Predicate -A statement that may be either logically true or logically false.

Query - A question you ask about the data in a database.

Record -A representation of some physical or conceptual object.

Row - Another representation of a record.

SQL - An industry standard data sublanguage, specifically designed to create, manipulate, and
control relational databases.

Table - A relation of data.

About

ClydeBank

Media
We are a multi-media publishing company that provides reliable, high-

quality and easily accessible information to a global customer base.

Developed out of the need for beginner-friendly content that is accessible

across multiple formats, we deliver reliable, up-to-date, high-quality

information through our multiple product offerings.

rough our strategic partnerships with some of the world’s largest

retailers, we are able to simplify the learning process for customers around

the world, providing them with an authoritative source of information for

the subjects that matter to them. Our end-user focused philosophy puts the

satisfaction of our customers at the forefront of our mission. We are

committed to creating multi-media products that allow our customers to

learn what they want, when they want and how they want.

ClydeBank Technology is a division of the multimedia-publishing firm

ClydeBank Media LLC. ClydeBank Media’s goal is to provide affordable,

accessible information to a global market through different forms of media

such as eBooks, paperback books and audio books. Company divisions are

based on subject matter, each consisting of a dedicated team of researchers,

writers, editors and designers.

For more information, please visit us at:

www.clydebankmedia.com

http://www.clydebankmedia.com/

or contact info@clydebankmedia.com

mailto:info@clydebankmedia.com

REMEMBER TO DOWNLOAD

YOUR FREE DIGITAL ASSETS!

Visit the URL below to access your free Digital Asset files that are included with

the purchase of this book.

DOWNLOAD YOURS HERE:

www.clydebankmedia.com/sql-assets

https://www.clydebankmedia.com/sql-assets

Explore the World of

TECHNOLOGY

TO EXPLORE ALL TITLES, VISIT:

www.clydebankmedia.com/shop

https://www.clydebankmedia.com/shop

Get titles like this absolutely free:

To get your FREE audiobook, visit:

www.clydebankmedia.com/free-audiobook

https://www.clydebankmedia.com/free-audiobook

ClydeBank Media is a Proud Sponsor of

AdoptAClassroom.org empowers teachers by providing the classroom

supplies and materials needed to help their students learn and succeed. As

an award-winning 501(c)(3), AdoptAClassroom.org makes it easy for

individual donors and corporate sponsors to donate funds to K-12

classrooms in public, private and charter schools throughout the U.S.

On average, teachers spend $600 of their own money each year to equip

their classrooms – 20% of teachers spend more than $1000 annually. Since

1998 AdoptAClassroom.org has raised more than $30 million and

benefited more than 4.25 million students. AdoptAClassroom.org holds a

4-star rating from Charity Navigator.

TO LEARN MORE, VISIT ADOPTACLASSROOM.ORG

https://www.adoptaclassroom.org/

Copyright 2016 by ClydeBank Media - All Rights Reserved.

This document is geared towards providing exact and reliable information in regards to the topic
and issue covered. The publication is sold with the idea that the publisher is not required to
render accounting, officially permitted, or otherwise, qualified services.
If advice is necessary, legal or professional, a practiced individual in the profession should be
ordered.
From a Declaration of Principles which was accepted and approved equally by a Committee of
the American Bar Association and a Committee of Publishers and Associations. In no way is it
legal to reproduce, duplicate, or transmit any part of this document in either electronic means or
in printed format. Recording of this publication is strictly prohibited and any storage of this
document is not allowed unless with written permission from the publisher.
The information provided herein is stated to be truthful and consistent, in that any liability, in
terms of inattention or otherwise, by any usage or abuse of any policies, processes, or directions
contained within is the solitary and utter responsibility of the recipient reader. Under no
circumstances will any legal responsibility or blame be held against the publisher for any
reparation, damages, or monetary loss due to the information herein, either directly or indirectly.
Respective authors own all copyrights not held by the publisher. The information herein is
offered for informational purposes solely, and is universal as so. The presentation of the
information is without contract or any type of guarantee assurance.
Trademarks: All trademarks are the property of their respective owners. The trademarks that are
used are without any consent, and the publication of the trademark is without permission or
backing by the trademark owner. All trademarks and brands within this book are for clarifying
purposes only and are owned by the owners themselves, not affiliated with this document.
ClydeBank Media LLC is not associated with any organization, product or service discussed in
this book. The publisher has made every effort to ensure that the information presented in this
book was accurate at time of publication. All precautions have been taken in the preparation of
this book. The publisher, author, editor and designer assume no responsibility for any loss,
damage, or disruption caused by errors or omissions from this book, whether such errors or
omissions result from negligence, accident, or any other cause.
Edition # 1 – Updated : April 28, 2016

Cover Illustration and Design: Katie Poorman, Copyright © 2016 by ClydeBank Media LLC
Interior Design: Katie Poorman, Copyright © 2016 by ClydeBank Media LLC

ClydeBank Media LLC
P.O Box 6561

Albany, NY 12206

Copyright © 2016
ClydeBank Media LLC

www.clydebankmedia.com
All Rights Reserved

e-ISBN: : 978-1-945051-54-8

	Contents
	Access Your Free Digital Assets
	Overview
	Sample Database

	Introduction
	What Is SQL?
	Syntax & Structure

	| 1 | Retrieving Data with SQL
	The SELECT Statement
	The FROM Clause
	Limiting Data by Specifying Columns
	SQL Predicates
	Returning DISTINCT rows
	TOP
	The WHERE Clause
	Table. 1 : List of conditional operators
	Comparison Operators
	Logical Operators
	fg. 11 : List of suppliers coming from the country of Brazil or the city of Tokyo
	Dealing With Ranges & Wildcards
	Operator Precedence
	The ORDER BY Clause
	fg. 16 : List of companies ordered by multiple columns
	Using Aliases with the AS Clause
	Selecting Records from Multiple Tables
	Including Excluded Data with OUTER JOIN
	fg. 25 : Products results from a RIGHT OUTER JOIN example
	NULL Values
	Table 3 : SQL built-in functions
	COUNT

	| 2 | Built-In Functions & Calculations
	SUM
	Other Functions
	Grouping Data with the GROUP BY Clause
	Limiting Group Results with HAVING

	| 3 | Entering & Modifying Data
	INSERT Information INTO the Database
	Updating Data
	Deleting Data from Tables

	| 4 | Defining Databases
	Creating/Deleting a Database
	Data Types
	Table. 4 : Fundamental data types
	Characters
	Numerical Data
	Date & Time
	Defining Tables

	Conclusion
	Glossary
	About Clydebank

